MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. EN 1.5113 Steel

C91000 bronze belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C91000 bronze and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0
11 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
72
Tensile Strength: Ultimate (UTS), MPa 230
580 to 900
Tensile Strength: Yield (Proof), MPa 150
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 960
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 64
52
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.4
Embodied Energy, MJ/kg 67
19
Embodied Water, L/kg 420
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 100
270 to 1570
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.5
21 to 32
Strength to Weight: Bending, points 9.7
20 to 27
Thermal Diffusivity, mm2/s 20
14
Thermal Shock Resistance, points 8.8
17 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.1
97 to 97.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
1.6 to 1.8
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.9 to 1.1
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 14 to 16
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.6
0