MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. S13800 Stainless Steel

C91000 bronze belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C91000 bronze and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 230
980 to 1730
Tensile Strength: Yield (Proof), MPa 150
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 160
810
Melting Completion (Liquidus), °C 960
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 64
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
15
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 4.1
3.4
Embodied Energy, MJ/kg 67
46
Embodied Water, L/kg 420
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1090 to 5490
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
35 to 61
Strength to Weight: Bending, points 9.7
28 to 41
Thermal Diffusivity, mm2/s 20
4.3
Thermal Shock Resistance, points 8.8
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.9 to 1.4
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.1
73.6 to 77.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.8
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 1.5
0 to 0.010
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.0080
Tin (Sn), % 14 to 16
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.6
0