MakeItFrom.com
Menu (ESC)

C91000 Bronze vs. S82031 Stainless Steel

C91000 bronze belongs to the copper alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C91000 bronze and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 230
780
Tensile Strength: Yield (Proof), MPa 150
570

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 960
1430
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 64
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.8
Embodied Energy, MJ/kg 67
39
Embodied Water, L/kg 420
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
280
Resilience: Unit (Modulus of Resilience), kJ/m3 100
820
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
28
Strength to Weight: Bending, points 9.7
24
Thermal Diffusivity, mm2/s 20
3.9
Thermal Shock Resistance, points 8.8
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 84 to 86
0 to 1.0
Iron (Fe), % 0 to 0.1
68 to 78.3
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0 to 0.8
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.24
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.0050
Tin (Sn), % 14 to 16
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.6
0