MakeItFrom.com
Menu (ESC)

C91700 Bronze vs. Grade 28 Titanium

C91700 bronze belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C91700 bronze and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 330
690 to 980
Tensile Strength: Yield (Proof), MPa 170
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 1020
1640
Melting Onset (Solidus), °C 850
1590
Specific Heat Capacity, J/kg-K 370
550
Thermal Conductivity, W/m-K 71
8.3
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 3.9
37
Embodied Energy, MJ/kg 63
600
Embodied Water, L/kg 400
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1370 to 3100
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 11
43 to 61
Strength to Weight: Bending, points 12
39 to 49
Thermal Diffusivity, mm2/s 22
3.4
Thermal Shock Resistance, points 12
47 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.0050
2.5 to 3.5
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 84.2 to 87.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.25
0
Nickel (Ni), % 1.2 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.3
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 11.3 to 12.5
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4