MakeItFrom.com
Menu (ESC)

C91700 Bronze vs. N08024 Nickel

C91700 bronze belongs to the copper alloys classification, while N08024 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C91700 bronze and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 330
620
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 1020
1430
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 71
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
41
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 3.9
7.2
Embodied Energy, MJ/kg 63
99
Embodied Water, L/kg 400
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
180
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
21
Strength to Weight: Bending, points 12
20
Thermal Diffusivity, mm2/s 22
3.2
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 84.2 to 87.5
0.5 to 1.5
Iron (Fe), % 0 to 0.2
26.6 to 38.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 1.2 to 2.0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0 to 0.3
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.035
Tin (Sn), % 11.3 to 12.5
0
Zinc (Zn), % 0 to 0.25
0