MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. ASTM A369 Grade FP11

C92200 bronze belongs to the copper alloys classification, while ASTM A369 grade FP11 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is ASTM A369 grade FP11.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
20
Fatigue Strength, MPa 76
160
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 280
470
Tensile Strength: Yield (Proof), MPa 140
240

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 990
1460
Melting Onset (Solidus), °C 830
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
2.9
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.6
Embodied Energy, MJ/kg 52
21
Embodied Water, L/kg 360
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
80
Resilience: Unit (Modulus of Resilience), kJ/m3 87
150
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.9
17
Strength to Weight: Bending, points 11
17
Thermal Diffusivity, mm2/s 21
11
Thermal Shock Resistance, points 9.9
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.25
96.1 to 97.7
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.5 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0