MakeItFrom.com
Menu (ESC)

C92200 Bronze vs. EN 1.4525 Stainless Steel

C92200 bronze belongs to the copper alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92200 bronze and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
5.6 to 13
Fatigue Strength, MPa 76
480 to 540
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 280
1030 to 1250
Tensile Strength: Yield (Proof), MPa 140
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 990
1430
Melting Onset (Solidus), °C 830
1390
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 70
18
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 52
39
Embodied Water, L/kg 360
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 87
1820 to 3230
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.9
36 to 45
Strength to Weight: Bending, points 11
29 to 33
Thermal Diffusivity, mm2/s 21
4.7
Thermal Shock Resistance, points 9.9
34 to 41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 86 to 90
2.5 to 4.0
Iron (Fe), % 0 to 0.25
70.4 to 79
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 1.0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0
Residuals, % 0 to 0.7
0