MakeItFrom.com
Menu (ESC)

C92300 Bronze vs. EN 1.7380 Steel

C92300 bronze belongs to the copper alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92300 bronze and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 19
19 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 300
540 to 550
Tensile Strength: Yield (Proof), MPa 140
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 850
1430
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 75
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
3.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.4
1.8
Embodied Energy, MJ/kg 56
23
Embodied Water, L/kg 370
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 86
230 to 280
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.5
19 to 20
Strength to Weight: Bending, points 11
19
Thermal Diffusivity, mm2/s 23
11
Thermal Shock Resistance, points 11
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 85 to 89
0 to 0.3
Iron (Fe), % 0 to 0.25
94.6 to 96.6
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 7.5 to 9.0
0
Zinc (Zn), % 2.5 to 5.0
0
Residuals, % 0 to 0.7
0