MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. ASTM A182 Grade F5a

C92600 bronze belongs to the copper alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
310
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 300
710
Tensile Strength: Yield (Proof), MPa 140
520

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 67
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.8
Embodied Energy, MJ/kg 58
24
Embodied Water, L/kg 390
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
160
Resilience: Unit (Modulus of Resilience), kJ/m3 88
700
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
25
Strength to Weight: Bending, points 11
23
Thermal Diffusivity, mm2/s 21
11
Thermal Shock Resistance, points 11
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 86 to 88.5
0
Iron (Fe), % 0 to 0.2
91.4 to 95.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.7
0 to 0.5
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0