MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. EN 1.4560 Stainless Steel

C92600 bronze belongs to the copper alloys classification, while EN 1.4560 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is EN 1.4560 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 300
550
Tensile Strength: Yield (Proof), MPa 140
190

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 840
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 67
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
15
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 58
42
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
220
Resilience: Unit (Modulus of Resilience), kJ/m3 88
92
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
20
Strength to Weight: Bending, points 11
19
Thermal Diffusivity, mm2/s 21
4.0
Thermal Shock Resistance, points 11
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 86 to 88.5
1.5 to 2.0
Iron (Fe), % 0 to 0.2
66.8 to 71
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.7
8.0 to 9.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0