MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. EN 1.4823 Stainless Steel

C92600 bronze belongs to the copper alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30
3.4
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 300
620
Tensile Strength: Yield (Proof), MPa 140
290

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 980
1400
Melting Onset (Solidus), °C 840
1360
Specific Heat Capacity, J/kg-K 370
490
Thermal Conductivity, W/m-K 67
17
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
16
Density, g/cm3 8.7
7.6
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 58
43
Embodied Water, L/kg 390
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
17
Resilience: Unit (Modulus of Resilience), kJ/m3 88
200
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 9.6
23
Strength to Weight: Bending, points 11
21
Thermal Diffusivity, mm2/s 21
4.5
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 86 to 88.5
0
Iron (Fe), % 0 to 0.2
60.9 to 70.7
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.7
3.0 to 6.0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.0050
1.0 to 2.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0