MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. EN 1.5508 Steel

C92600 bronze belongs to the copper alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
11 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 300
420 to 1460
Tensile Strength: Yield (Proof), MPa 140
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 67
51
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
1.9
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.4
Embodied Energy, MJ/kg 58
19
Embodied Water, L/kg 390
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 88
260 to 640
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.6
15 to 52
Strength to Weight: Bending, points 11
16 to 36
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 11
12 to 43

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 86 to 88.5
0 to 0.25
Iron (Fe), % 0 to 0.2
97.9 to 99.199
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.3
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 9.3 to 10.5
0
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0