MakeItFrom.com
Menu (ESC)

C92600 Bronze vs. EN 2.4951 Nickel

C92600 bronze belongs to the copper alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92600 bronze and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 30
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 300
750
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 980
1360
Melting Onset (Solidus), °C 840
1310
Specific Heat Capacity, J/kg-K 370
460
Thermal Conductivity, W/m-K 67
12
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
60
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 3.6
9.3
Embodied Energy, MJ/kg 58
130
Embodied Water, L/kg 390
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
200
Resilience: Unit (Modulus of Resilience), kJ/m3 88
190
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.6
25
Strength to Weight: Bending, points 11
22
Thermal Diffusivity, mm2/s 21
3.1
Thermal Shock Resistance, points 11
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 0.3
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 86 to 88.5
0 to 0.5
Iron (Fe), % 0 to 0.2
0 to 5.0
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.7
65.4 to 81.7
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.3 to 10.5
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 1.3 to 2.5
0
Residuals, % 0 to 0.7
0