MakeItFrom.com
Menu (ESC)

C92700 Bronze vs. AISI 305 Stainless Steel

C92700 bronze belongs to the copper alloys classification, while AISI 305 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92700 bronze and the bottom bar is AISI 305 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
34 to 45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 290
580 to 710
Tensile Strength: Yield (Proof), MPa 150
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
540
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 840
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 47
16
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 35
16
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.2
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
200 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 110
130 to 320
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.1
20 to 25
Strength to Weight: Bending, points 11
20 to 23
Thermal Diffusivity, mm2/s 15
4.2
Thermal Shock Resistance, points 11
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.2
65.1 to 72.5
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
10.5 to 13
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.7
0