MakeItFrom.com
Menu (ESC)

C92700 Bronze vs. EN 1.4563 Stainless Steel

C92700 bronze belongs to the copper alloys classification, while EN 1.4563 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92700 bronze and the bottom bar is EN 1.4563 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 290
620
Tensile Strength: Yield (Proof), MPa 150
250

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 840
1370
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 47
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 35
36
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 3.6
6.3
Embodied Energy, MJ/kg 58
87
Embodied Water, L/kg 390
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110
150
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.1
21
Strength to Weight: Bending, points 11
20
Thermal Diffusivity, mm2/s 15
3.2
Thermal Shock Resistance, points 11
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 86 to 89
0.7 to 1.5
Iron (Fe), % 0 to 0.2
31.6 to 40.3
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 1.0
30 to 32
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.010
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.7
0
Residuals, % 0 to 0.7
0