MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. AISI 202 Stainless Steel

C92800 bronze belongs to the copper alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 1.0
14 to 45
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
77
Tensile Strength: Ultimate (UTS), MPa 280
700 to 980
Tensile Strength: Yield (Proof), MPa 210
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 140
910
Melting Completion (Liquidus), °C 960
1400
Melting Onset (Solidus), °C 820
1360
Specific Heat Capacity, J/kg-K 350
480
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 4.1
2.8
Embodied Energy, MJ/kg 67
40
Embodied Water, L/kg 430
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 210
250 to 840
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8
25 to 35
Strength to Weight: Bending, points 11
23 to 29
Thermal Shock Resistance, points 11
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.2
63.5 to 71.5
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
7.5 to 10
Nickel (Ni), % 0 to 0.8
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 1.5
0 to 0.060
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 15 to 17
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0