MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. EN 1.0303 Steel

C92800 bronze belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 1.0
12 to 25
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 37
73
Tensile Strength: Ultimate (UTS), MPa 280
290 to 410
Tensile Strength: Yield (Proof), MPa 210
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 960
1470
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 350
470
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 4.1
1.4
Embodied Energy, MJ/kg 67
18
Embodied Water, L/kg 430
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 210
110 to 270
Stiffness to Weight: Axial, points 6.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8
10 to 15
Strength to Weight: Bending, points 11
12 to 16
Thermal Shock Resistance, points 11
9.2 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.020 to 0.060
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.2
99.335 to 99.71
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 15 to 17
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0