MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. EN 1.3975 Stainless Steel

C92800 bronze belongs to the copper alloys classification, while EN 1.3975 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is EN 1.3975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 1.0
27
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
76
Tensile Strength: Ultimate (UTS), MPa 280
660
Tensile Strength: Yield (Proof), MPa 210
320

Thermal Properties

Latent Heat of Fusion, J/g 170
340
Maximum Temperature: Mechanical, °C 140
910
Melting Completion (Liquidus), °C 960
1360
Melting Onset (Solidus), °C 820
1320
Specific Heat Capacity, J/kg-K 350
500
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 8.7
7.5
Embodied Carbon, kg CO2/kg material 4.1
3.3
Embodied Energy, MJ/kg 67
47
Embodied Water, L/kg 430
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
150
Resilience: Unit (Modulus of Resilience), kJ/m3 210
270
Stiffness to Weight: Axial, points 6.4
14
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 8.8
24
Strength to Weight: Bending, points 11
22
Thermal Shock Resistance, points 11
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.2
58.2 to 65.4
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.8
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
3.5 to 4.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 15 to 17
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0