MakeItFrom.com
Menu (ESC)

C92800 Bronze vs. SAE-AISI 1117 Steel

C92800 bronze belongs to the copper alloys classification, while SAE-AISI 1117 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C92800 bronze and the bottom bar is SAE-AISI 1117 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 1.0
17 to 26
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 37
73
Tensile Strength: Ultimate (UTS), MPa 280
490 to 540
Tensile Strength: Yield (Proof), MPa 210
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.4
Embodied Energy, MJ/kg 67
18
Embodied Water, L/kg 430
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
86 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
180 to 550
Stiffness to Weight: Axial, points 6.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.8
17 to 19
Strength to Weight: Bending, points 11
18 to 19
Thermal Shock Resistance, points 11
15 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.14 to 0.2
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.2
98.3 to 98.8
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
1.0 to 1.3
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0.080 to 0.13
Tin (Sn), % 15 to 17
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.7
0