MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. ACI-ASTM CB30 Steel

C93200 bronze belongs to the copper alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
77
Tensile Strength: Ultimate (UTS), MPa 240
500
Tensile Strength: Yield (Proof), MPa 130
230

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 160
940
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 59
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
10
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.3
Embodied Energy, MJ/kg 52
33
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 76
140
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
18
Strength to Weight: Bending, points 9.7
18
Thermal Diffusivity, mm2/s 18
5.6
Thermal Shock Resistance, points 9.3
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 81 to 85
0 to 1.2
Iron (Fe), % 0 to 0.2
72.9 to 82
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
0 to 2.0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.5
Sulfur (S), % 0 to 0.080
0 to 0.040
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0