MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. Grade 5 Titanium

C93200 bronze belongs to the copper alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20
8.6 to 11
Fatigue Strength, MPa 110
530 to 630
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 38
40
Tensile Strength: Ultimate (UTS), MPa 240
1000 to 1190
Tensile Strength: Yield (Proof), MPa 130
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 980
1610
Melting Onset (Solidus), °C 850
1650
Specific Heat Capacity, J/kg-K 360
560
Thermal Conductivity, W/m-K 59
6.8
Thermal Expansion, µm/m-K 18
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.8
4.4
Embodied Carbon, kg CO2/kg material 3.2
38
Embodied Energy, MJ/kg 52
610
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 76
3980 to 5880
Stiffness to Weight: Axial, points 6.5
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 7.5
62 to 75
Strength to Weight: Bending, points 9.7
50 to 56
Thermal Diffusivity, mm2/s 18
2.7
Thermal Shock Resistance, points 9.3
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
5.5 to 6.8
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 81 to 85
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 6.0 to 8.0
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 6.3 to 7.5
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0 to 0.4