MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. Grade CW2M Nickel

C93200 bronze belongs to the copper alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is grade CW2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 20
23
Fatigue Strength, MPa 110
190
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
83
Tensile Strength: Ultimate (UTS), MPa 240
560
Tensile Strength: Yield (Proof), MPa 130
310

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 980
1520
Melting Onset (Solidus), °C 850
1460
Specific Heat Capacity, J/kg-K 360
430
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 32
70
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.2
12
Embodied Energy, MJ/kg 52
170
Embodied Water, L/kg 370
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 76
220
Stiffness to Weight: Axial, points 6.5
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.5
18
Strength to Weight: Bending, points 9.7
17
Thermal Shock Resistance, points 9.3
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
15 to 17.5
Copper (Cu), % 81 to 85
0
Iron (Fe), % 0 to 0.2
0 to 2.0
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 17.5
Nickel (Ni), % 0 to 1.0
60.1 to 70
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0