MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. N06045 Nickel

C93200 bronze belongs to the copper alloys classification, while N06045 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
37
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
77
Tensile Strength: Ultimate (UTS), MPa 240
690
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 180
350
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 980
1350
Melting Onset (Solidus), °C 850
1300
Specific Heat Capacity, J/kg-K 360
480
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 32
42
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
6.9
Embodied Energy, MJ/kg 52
98
Embodied Water, L/kg 370
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
200
Resilience: Unit (Modulus of Resilience), kJ/m3 76
180
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.5
24
Strength to Weight: Bending, points 9.7
22
Thermal Shock Resistance, points 9.3
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 81 to 85
0 to 0.3
Iron (Fe), % 0 to 0.2
21 to 25
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
45 to 50.4
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
2.5 to 3.0
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0