MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. S42035 Stainless Steel

C93200 bronze belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
18
Fatigue Strength, MPa 110
260
Poisson's Ratio 0.35
0.28
Rockwell B Hardness 65
76
Shear Modulus, GPa 38
77
Tensile Strength: Ultimate (UTS), MPa 240
630
Tensile Strength: Yield (Proof), MPa 130
430

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 160
810
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 59
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.4
Embodied Energy, MJ/kg 52
34
Embodied Water, L/kg 370
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
100
Resilience: Unit (Modulus of Resilience), kJ/m3 76
460
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
22
Strength to Weight: Bending, points 9.7
21
Thermal Diffusivity, mm2/s 18
7.2
Thermal Shock Resistance, points 9.3
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 81 to 85
0
Iron (Fe), % 0 to 0.2
78.1 to 85
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0 to 1.0
1.0 to 2.5
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0