MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. 3102 Aluminum

C93400 bronze belongs to the copper alloys classification, while 3102 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C93400 bronze and the bottom bar is 3102 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 9.1
23 to 28
Poisson's Ratio 0.35
0.33
Shear Modulus, GPa 38
26
Tensile Strength: Ultimate (UTS), MPa 270
92 to 100
Tensile Strength: Yield (Proof), MPa 150
28 to 34

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 150
180
Melting Completion (Liquidus), °C 950
640
Melting Onset (Solidus), °C 850
640
Specific Heat Capacity, J/kg-K 350
900
Thermal Conductivity, W/m-K 58
230
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
56
Electrical Conductivity: Equal Weight (Specific), % IACS 12
190

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.0
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 3.3
8.2
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 380
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 120
5.8 to 8.3
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
50
Strength to Weight: Axial, points 8.3
9.4 to 10
Strength to Weight: Bending, points 10
17 to 18
Thermal Diffusivity, mm2/s 18
92
Thermal Shock Resistance, points 10
4.1 to 4.4

Alloy Composition

Aluminum (Al), % 0 to 0.0050
97.9 to 99.95
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 82 to 85
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0.050 to 0.4
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.8
0 to 0.3
Residuals, % 0
0 to 0.15