MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. AWS E410

C93400 bronze belongs to the copper alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
23
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
76
Tensile Strength: Ultimate (UTS), MPa 270
580
Tensile Strength: Yield (Proof), MPa 150
440

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 58
28
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
7.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.0
Embodied Energy, MJ/kg 54
28
Embodied Water, L/kg 380
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
500
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 8.3
21
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 18
7.5
Thermal Shock Resistance, points 10
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 82 to 85
0 to 0.75
Iron (Fe), % 0 to 0.2
82.2 to 89
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 1.0
0 to 0.7
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.9
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0