MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. C19800 Copper

Both C93400 bronze and C19800 copper are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 9.1
9.0 to 12
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 38
43
Tensile Strength: Ultimate (UTS), MPa 270
430 to 550
Tensile Strength: Yield (Proof), MPa 150
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 150
200
Melting Completion (Liquidus), °C 950
1070
Melting Onset (Solidus), °C 850
1050
Specific Heat Capacity, J/kg-K 350
390
Thermal Conductivity, W/m-K 58
260
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
61
Electrical Conductivity: Equal Weight (Specific), % IACS 12
62

Otherwise Unclassified Properties

Base Metal Price, % relative 32
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 54
43
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 120
770 to 1320
Stiffness to Weight: Axial, points 6.3
7.2
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 8.3
14 to 17
Strength to Weight: Bending, points 10
14 to 17
Thermal Diffusivity, mm2/s 18
75
Thermal Shock Resistance, points 10
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 82 to 85
95.7 to 99.47
Iron (Fe), % 0 to 0.2
0.020 to 0.5
Lead (Pb), % 7.0 to 9.0
0
Magnesium (Mg), % 0
0.1 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0.010 to 0.1
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0.1 to 1.0
Zinc (Zn), % 0 to 0.8
0.3 to 1.5
Residuals, % 0 to 1.0
0 to 0.2