MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. N07773 Nickel

C93400 bronze belongs to the copper alloys classification, while N07773 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is N07773 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.1
40
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
77
Tensile Strength: Ultimate (UTS), MPa 270
710
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 150
990
Melting Completion (Liquidus), °C 950
1510
Melting Onset (Solidus), °C 850
1460
Specific Heat Capacity, J/kg-K 350
450
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 32
75
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 3.3
13
Embodied Energy, MJ/kg 54
180
Embodied Water, L/kg 380
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 8.3
23
Strength to Weight: Bending, points 10
21
Thermal Shock Resistance, points 10
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0 to 2.0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 27
Copper (Cu), % 82 to 85
0
Iron (Fe), % 0 to 0.2
0 to 32
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0 to 1.0
45 to 60
Niobium (Nb), % 0
2.5 to 6.0
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0 to 2.0
Tungsten (W), % 0
0 to 6.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0