MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. S64512 Stainless Steel

C93400 bronze belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.1
17
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
76
Tensile Strength: Ultimate (UTS), MPa 270
1140
Tensile Strength: Yield (Proof), MPa 150
890

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 150
750
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 58
28
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
10
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
3.3
Embodied Energy, MJ/kg 54
47
Embodied Water, L/kg 380
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
180
Resilience: Unit (Modulus of Resilience), kJ/m3 120
2020
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 8.3
40
Strength to Weight: Bending, points 10
31
Thermal Diffusivity, mm2/s 18
7.5
Thermal Shock Resistance, points 10
42

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 82 to 85
0
Iron (Fe), % 0 to 0.2
80.6 to 84.7
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 1.0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.025
Tin (Sn), % 7.0 to 9.0
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0