MakeItFrom.com
Menu (ESC)

C93500 Bronze vs. C16200 Copper

Both C93500 bronze and C16200 copper are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C93500 bronze and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 15
2.0 to 56
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 38
43
Tensile Strength: Ultimate (UTS), MPa 220
240 to 550
Tensile Strength: Yield (Proof), MPa 110
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 160
370
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 850
1030
Specific Heat Capacity, J/kg-K 360
380
Thermal Conductivity, W/m-K 70
360
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
90
Electrical Conductivity: Equal Weight (Specific), % IACS 15
90

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 350
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 59
10 to 970
Stiffness to Weight: Axial, points 6.3
7.2
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 6.9
7.4 to 17
Strength to Weight: Bending, points 9.1
9.6 to 17
Thermal Diffusivity, mm2/s 22
100
Thermal Shock Resistance, points 8.5
8.7 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.3
0
Cadmium (Cd), % 0
0.7 to 1.2
Copper (Cu), % 83 to 86
98.6 to 99.3
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 8.0 to 10
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.3 to 6.0
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 1.0
0