MakeItFrom.com
Menu (ESC)

C93500 Bronze vs. C37000 Muntz Metal

Both C93500 bronze and C37000 Muntz Metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 63% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C93500 bronze and the bottom bar is C37000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 15
40
Poisson's Ratio 0.35
0.31
Shear Modulus, GPa 38
39
Tensile Strength: Ultimate (UTS), MPa 220
400
Tensile Strength: Yield (Proof), MPa 110
160

Thermal Properties

Latent Heat of Fusion, J/g 180
170
Maximum Temperature: Mechanical, °C 160
120
Melting Completion (Liquidus), °C 1000
900
Melting Onset (Solidus), °C 850
890
Specific Heat Capacity, J/kg-K 360
380
Thermal Conductivity, W/m-K 70
120
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
27
Electrical Conductivity: Equal Weight (Specific), % IACS 15
30

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 49
45
Embodied Water, L/kg 350
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
130
Resilience: Unit (Modulus of Resilience), kJ/m3 59
120
Stiffness to Weight: Axial, points 6.3
7.2
Stiffness to Weight: Bending, points 17
19
Strength to Weight: Axial, points 6.9
14
Strength to Weight: Bending, points 9.1
15
Thermal Diffusivity, mm2/s 22
39
Thermal Shock Resistance, points 8.5
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.3
0
Copper (Cu), % 83 to 86
59 to 62
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 8.0 to 10
0.8 to 1.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.3 to 6.0
0
Zinc (Zn), % 0 to 2.0
36 to 40.2
Residuals, % 0 to 1.0
0 to 0.4