MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. Grade 29 Titanium

C93700 bronze belongs to the copper alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
110
Elongation at Break, % 20
6.8 to 11
Fatigue Strength, MPa 90
460 to 510
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 37
40
Tensile Strength: Ultimate (UTS), MPa 240
930 to 940
Tensile Strength: Yield (Proof), MPa 130
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 140
340
Melting Completion (Liquidus), °C 930
1610
Melting Onset (Solidus), °C 760
1560
Specific Heat Capacity, J/kg-K 350
560
Thermal Conductivity, W/m-K 47
7.3
Thermal Expansion, µm/m-K 19
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 3.5
39
Embodied Energy, MJ/kg 57
640
Embodied Water, L/kg 390
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 79
3420 to 3540
Stiffness to Weight: Axial, points 6.2
13
Stiffness to Weight: Bending, points 17
35
Strength to Weight: Axial, points 7.5
58 to 59
Strength to Weight: Bending, points 9.6
47 to 48
Thermal Diffusivity, mm2/s 15
2.9
Thermal Shock Resistance, points 9.4
68 to 69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
5.5 to 6.5
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 78 to 82
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 8.0 to 11
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 1.5
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0 to 0.4