MakeItFrom.com
Menu (ESC)

C93800 Bronze vs. EN 1.4031 Stainless Steel

C93800 bronze belongs to the copper alloys classification, while EN 1.4031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93800 bronze and the bottom bar is EN 1.4031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 96
190
Elongation at Break, % 9.7
11 to 13
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 35
76
Tensile Strength: Ultimate (UTS), MPa 200
670 to 900
Tensile Strength: Yield (Proof), MPa 120
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 140
770
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 340
480
Thermal Conductivity, W/m-K 52
30
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 9.1
7.7
Embodied Carbon, kg CO2/kg material 3.2
1.9
Embodied Energy, MJ/kg 51
27
Embodied Water, L/kg 380
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
77 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 70
380 to 1360
Stiffness to Weight: Axial, points 5.9
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 6.1
24 to 32
Strength to Weight: Bending, points 8.4
22 to 27
Thermal Diffusivity, mm2/s 17
8.1
Thermal Shock Resistance, points 8.1
23 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 75 to 79
0
Iron (Fe), % 0 to 0.15
83 to 87.1
Lead (Pb), % 13 to 16
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0