MakeItFrom.com
Menu (ESC)

C93800 Bronze vs. R30155 Cobalt

C93800 bronze belongs to the copper alloys classification, while R30155 cobalt belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C93800 bronze and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 96
210
Elongation at Break, % 9.7
34
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 35
81
Tensile Strength: Ultimate (UTS), MPa 200
850
Tensile Strength: Yield (Proof), MPa 120
390

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 940
1470
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 340
450
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 9.1
8.5
Embodied Carbon, kg CO2/kg material 3.2
9.7
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 380
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
230
Resilience: Unit (Modulus of Resilience), kJ/m3 70
370
Stiffness to Weight: Axial, points 5.9
14
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 6.1
28
Strength to Weight: Bending, points 8.4
24
Thermal Diffusivity, mm2/s 17
3.2
Thermal Shock Resistance, points 8.1
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 75 to 79
0
Iron (Fe), % 0 to 0.15
24.3 to 36.2
Lead (Pb), % 13 to 16
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 1.0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tin (Sn), % 6.3 to 7.5
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0