MakeItFrom.com
Menu (ESC)

C94100 Bronze vs. EN 1.4525 Stainless Steel

C94100 bronze belongs to the copper alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C94100 bronze and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 92
190
Elongation at Break, % 7.8
5.6 to 13
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 34
76
Tensile Strength: Ultimate (UTS), MPa 190
1030 to 1250
Tensile Strength: Yield (Proof), MPa 130
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 160
280
Maximum Temperature: Mechanical, °C 130
860
Melting Completion (Liquidus), °C 870
1430
Melting Onset (Solidus), °C 790
1390
Specific Heat Capacity, J/kg-K 330
480
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 9.2
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 97
1820 to 3230
Stiffness to Weight: Axial, points 5.5
14
Stiffness to Weight: Bending, points 16
25
Strength to Weight: Axial, points 5.8
36 to 45
Strength to Weight: Bending, points 8.1
29 to 33
Thermal Shock Resistance, points 7.6
34 to 41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 72 to 79
2.5 to 4.0
Iron (Fe), % 0 to 0.25
70.4 to 79
Lead (Pb), % 18 to 22
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 1.0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.025
Tin (Sn), % 4.5 to 6.5
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 1.3
0