MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. EN 1.4658 Stainless Steel

C94300 bronze belongs to the copper alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
210
Elongation at Break, % 9.7
28
Poisson's Ratio 0.36
0.27
Shear Modulus, GPa 32
81
Tensile Strength: Ultimate (UTS), MPa 180
900
Tensile Strength: Yield (Proof), MPa 120
730

Thermal Properties

Latent Heat of Fusion, J/g 150
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 820
1450
Melting Onset (Solidus), °C 760
1400
Specific Heat Capacity, J/kg-K 320
470
Thermal Conductivity, W/m-K 63
16
Thermal Expansion, µm/m-K 20
13

Otherwise Unclassified Properties

Base Metal Price, % relative 28
25
Density, g/cm3 9.3
7.8
Embodied Carbon, kg CO2/kg material 2.9
4.5
Embodied Energy, MJ/kg 47
61
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
240
Resilience: Unit (Modulus of Resilience), kJ/m3 77
1280
Stiffness to Weight: Axial, points 5.2
15
Stiffness to Weight: Bending, points 16
25
Strength to Weight: Axial, points 5.2
32
Strength to Weight: Bending, points 7.4
26
Thermal Diffusivity, mm2/s 21
4.3
Thermal Shock Resistance, points 7.1
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 67 to 72
0 to 1.0
Iron (Fe), % 0 to 0.15
50.9 to 63.7
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 1.0
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0