MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. S45000 Stainless Steel

C94300 bronze belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
200
Elongation at Break, % 9.7
6.8 to 14
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 32
76
Tensile Strength: Ultimate (UTS), MPa 180
980 to 1410
Tensile Strength: Yield (Proof), MPa 120
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 150
280
Maximum Temperature: Mechanical, °C 110
840
Melting Completion (Liquidus), °C 820
1440
Melting Onset (Solidus), °C 760
1390
Specific Heat Capacity, J/kg-K 320
480
Thermal Conductivity, W/m-K 63
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 9.3
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 77
850 to 4400
Stiffness to Weight: Axial, points 5.2
14
Stiffness to Weight: Bending, points 16
25
Strength to Weight: Axial, points 5.2
35 to 50
Strength to Weight: Bending, points 7.4
28 to 36
Thermal Diffusivity, mm2/s 21
4.5
Thermal Shock Resistance, points 7.1
33 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 67 to 72
1.3 to 1.8
Iron (Fe), % 0 to 0.15
72.1 to 79.3
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 1.0
5.0 to 7.0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0