MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. C42500 Brass

Both C94800 bronze and C42500 brass are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
2.0 to 49
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 310
310 to 630
Tensile Strength: Yield (Proof), MPa 160
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 200
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 1030
1030
Melting Onset (Solidus), °C 900
1010
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
28
Electrical Conductivity: Equal Weight (Specific), % IACS 12
29

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 56
46
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 110
64 to 1570
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.8
9.9 to 20
Strength to Weight: Bending, points 12
12 to 19
Thermal Diffusivity, mm2/s 12
36
Thermal Shock Resistance, points 11
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 84 to 89
87 to 90
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0.3 to 1.0
0 to 0.050
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 4.5 to 6.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.35
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 4.5 to 6.0
1.5 to 3.0
Zinc (Zn), % 1.0 to 2.5
6.1 to 11.5
Residuals, % 0 to 1.3
0 to 0.5