MakeItFrom.com
Menu (ESC)

C94800 Bronze vs. S32906 Stainless Steel

C94800 bronze belongs to the copper alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C94800 bronze and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 22
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
81
Tensile Strength: Ultimate (UTS), MPa 310
850
Tensile Strength: Yield (Proof), MPa 160
620

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
20
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.5
3.7
Embodied Energy, MJ/kg 56
52
Embodied Water, L/kg 350
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
220
Resilience: Unit (Modulus of Resilience), kJ/m3 110
950
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.8
30
Strength to Weight: Bending, points 12
26
Thermal Diffusivity, mm2/s 12
3.6
Thermal Shock Resistance, points 11
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 84 to 89
0 to 0.8
Iron (Fe), % 0 to 0.25
56.6 to 63.6
Lead (Pb), % 0.3 to 1.0
0
Manganese (Mn), % 0 to 0.2
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 4.5 to 6.0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 1.0 to 2.5
0
Residuals, % 0 to 1.3
0