MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. 3103 Aluminum

C95200 bronze belongs to the copper alloys classification, while 3103 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C95200 bronze and the bottom bar is 3103 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 29
1.1 to 28
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 520
100 to 220
Tensile Strength: Yield (Proof), MPa 190
39 to 200

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 220
190
Melting Completion (Liquidus), °C 1050
660
Melting Onset (Solidus), °C 1040
640
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 50
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
42
Electrical Conductivity: Equal Weight (Specific), % IACS 12
140

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 380
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 170
11 to 280
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 17
10 to 22
Strength to Weight: Bending, points 17
18 to 30
Thermal Diffusivity, mm2/s 14
64
Thermal Shock Resistance, points 19
4.6 to 9.9

Alloy Composition

Aluminum (Al), % 8.5 to 9.5
96.3 to 99.1
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 86 to 89
0 to 0.1
Iron (Fe), % 2.5 to 4.0
0 to 0.7
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0
0.9 to 1.5
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.15