MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. C26000 Brass

Both C95200 bronze and C26000 brass are copper alloys. They have 70% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is C26000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 29
2.5 to 66
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 520
320 to 680
Tensile Strength: Yield (Proof), MPa 190
110 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
180
Maximum Temperature: Mechanical, °C 220
140
Melting Completion (Liquidus), °C 1050
950
Melting Onset (Solidus), °C 1040
920
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 50
120
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
28
Electrical Conductivity: Equal Weight (Specific), % IACS 12
31

Otherwise Unclassified Properties

Base Metal Price, % relative 28
25
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 50
45
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.1 to 420
Resilience: Unit (Modulus of Resilience), kJ/m3 170
51 to 1490
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 17
11 to 23
Strength to Weight: Bending, points 17
13 to 21
Thermal Diffusivity, mm2/s 14
38
Thermal Shock Resistance, points 19
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Bismuth (Bi), % 0
0 to 0.0059
Copper (Cu), % 86 to 89
68.5 to 71.5
Iron (Fe), % 2.5 to 4.0
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Zinc (Zn), % 0
28.1 to 31.5
Residuals, % 0 to 1.0
0 to 0.3