MakeItFrom.com
Menu (ESC)

C95200 Bronze vs. C91100 Bronze

Both C95200 bronze and C91100 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95200 bronze and the bottom bar is C91100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 29
2.0
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
39
Tensile Strength: Ultimate (UTS), MPa 520
240
Tensile Strength: Yield (Proof), MPa 190
170

Thermal Properties

Latent Heat of Fusion, J/g 230
180
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 1050
950
Melting Onset (Solidus), °C 1040
820
Specific Heat Capacity, J/kg-K 430
360
Thermal Conductivity, W/m-K 50
63
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
38
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.0
4.2
Embodied Energy, MJ/kg 50
69
Embodied Water, L/kg 380
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
4.4
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 7.6
6.7
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 17
7.7
Strength to Weight: Bending, points 17
9.9
Thermal Diffusivity, mm2/s 14
20
Thermal Shock Resistance, points 19
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 86 to 89
82 to 85
Iron (Fe), % 2.5 to 4.0
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 1.0
0