MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. ACI-ASTM CK35MN Steel

C95300 bronze belongs to the copper alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 170
190
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 14 to 25
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
81
Tensile Strength: Ultimate (UTS), MPa 520 to 610
650
Tensile Strength: Yield (Proof), MPa 190 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 63
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.1
5.9
Embodied Energy, MJ/kg 52
81
Embodied Water, L/kg 390
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
240
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17 to 21
22
Strength to Weight: Bending, points 17 to 19
21
Thermal Diffusivity, mm2/s 17
3.3
Thermal Shock Resistance, points 19 to 22
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 86.5 to 90.2
0 to 0.4
Iron (Fe), % 0.8 to 1.5
43.4 to 51.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 1.0
0