MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. EN 1.4107 Stainless Steel

C95300 bronze belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 25
18 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 520 to 610
620 to 700
Tensile Strength: Yield (Proof), MPa 190 to 310
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
740
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 63
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.1
Embodied Energy, MJ/kg 52
30
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
420 to 840
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17 to 21
22 to 25
Strength to Weight: Bending, points 17 to 19
21 to 22
Thermal Diffusivity, mm2/s 17
7.2
Thermal Shock Resistance, points 19 to 22
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 86.5 to 90.2
0 to 0.3
Iron (Fe), % 0.8 to 1.5
83.8 to 87.2
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.080
Residuals, % 0 to 1.0
0

Comparable Variants