MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. EN 1.4588 Stainless Steel

C95300 bronze belongs to the copper alloys classification, while EN 1.4588 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is EN 1.4588 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 170
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 25
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 520 to 610
540
Tensile Strength: Yield (Proof), MPa 190 to 310
240

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
460
Thermal Conductivity, W/m-K 63
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
33
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.1
6.2
Embodied Energy, MJ/kg 52
84
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17 to 21
18
Strength to Weight: Bending, points 17 to 19
18
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 19 to 22
11

Alloy Composition

Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 86.5 to 90.2
0.5 to 1.5
Iron (Fe), % 0.8 to 1.5
41.2 to 50.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 1.0
0