MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. EN AC-45400 Aluminum

C95300 bronze belongs to the copper alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C95300 bronze and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 170
86
Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 14 to 25
6.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 520 to 610
260
Tensile Strength: Yield (Proof), MPa 190 to 310
130

Thermal Properties

Latent Heat of Fusion, J/g 230
470
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
630
Melting Onset (Solidus), °C 1040
560
Specific Heat Capacity, J/kg-K 440
880
Thermal Conductivity, W/m-K 63
140
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
30
Electrical Conductivity: Equal Weight (Specific), % IACS 14
95

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 3.1
7.8
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 390
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
14
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
110
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 17 to 21
25
Strength to Weight: Bending, points 17 to 19
32
Thermal Diffusivity, mm2/s 17
54
Thermal Shock Resistance, points 19 to 22
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
88.4 to 92.9
Copper (Cu), % 86.5 to 90.2
2.6 to 3.6
Iron (Fe), % 0.8 to 1.5
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 1.0
0 to 0.15