MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. Grade 34 Titanium

C95300 bronze belongs to the copper alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14 to 25
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 520 to 610
510
Tensile Strength: Yield (Proof), MPa 190 to 310
450

Thermal Properties

Latent Heat of Fusion, J/g 230
420
Maximum Temperature: Mechanical, °C 220
320
Melting Completion (Liquidus), °C 1050
1660
Melting Onset (Solidus), °C 1040
1610
Specific Heat Capacity, J/kg-K 440
540
Thermal Conductivity, W/m-K 63
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
55
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.1
33
Embodied Energy, MJ/kg 52
530
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
960
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 17 to 21
31
Strength to Weight: Bending, points 17 to 19
31
Thermal Diffusivity, mm2/s 17
8.4
Thermal Shock Resistance, points 19 to 22
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0.1 to 0.2
Copper (Cu), % 86.5 to 90.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.8 to 1.5
0 to 0.3
Nickel (Ni), % 0
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Ruthenium (Ru), % 0
0.020 to 0.040
Titanium (Ti), % 0
98 to 99.52
Residuals, % 0 to 1.0
0 to 0.4