MakeItFrom.com
Menu (ESC)

C95300 Bronze vs. C65100 Bronze

Both C95300 bronze and C65100 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95300 bronze and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14 to 25
2.4 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 520 to 610
280 to 560
Tensile Strength: Yield (Proof), MPa 190 to 310
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1050
1060
Melting Onset (Solidus), °C 1040
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 63
57
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
12
Electrical Conductivity: Equal Weight (Specific), % IACS 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 52
41
Embodied Water, L/kg 390
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 420
39 to 820
Stiffness to Weight: Axial, points 7.5
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 17 to 21
8.7 to 18
Strength to Weight: Bending, points 17 to 19
11 to 17
Thermal Diffusivity, mm2/s 17
16
Thermal Shock Resistance, points 19 to 22
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 11
0
Copper (Cu), % 86.5 to 90.2
94.5 to 99.2
Iron (Fe), % 0.8 to 1.5
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.7
Silicon (Si), % 0
0.8 to 2.0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 1.0
0 to 0.5