MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. AISI 202 Stainless Steel

C95400 bronze belongs to the copper alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.1 to 16
14 to 45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 600 to 710
700 to 980
Tensile Strength: Yield (Proof), MPa 240 to 360
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
910
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 27
13
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
250 to 840
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 20 to 24
25 to 35
Strength to Weight: Bending, points 19 to 22
23 to 29
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 21 to 25
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 83 to 87
0
Iron (Fe), % 3.0 to 5.0
63.5 to 71.5
Manganese (Mn), % 0 to 0.5
7.5 to 10
Nickel (Ni), % 0 to 1.5
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0