MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. EN 1.4107 Stainless Steel

C95400 bronze belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.1 to 16
18 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 600 to 710
620 to 700
Tensile Strength: Yield (Proof), MPa 240 to 360
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
740
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
7.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.1
Embodied Energy, MJ/kg 53
30
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
420 to 840
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 20 to 24
22 to 25
Strength to Weight: Bending, points 19 to 22
21 to 22
Thermal Diffusivity, mm2/s 16
7.2
Thermal Shock Resistance, points 21 to 25
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 83 to 87
0 to 0.3
Iron (Fe), % 3.0 to 5.0
83.8 to 87.2
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.5
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.080
Residuals, % 0 to 0.5
0

Comparable Variants